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From the legendary ChatGPT 

https://chat.openai.com/


Objectives

● Focus on a high-profile class of models - OpenAI’s GPT
○ GPT: Generative Pre-trained Transformer

● What is GPT? What does it do?

● What are GPT’s components? How does it work end-to-end?
○ Tokenization, word embeddings, attention mechanisms

● How is GPT used in applications (e.g. ChatGPT)?



Who am I?

● UT-Austin alum - Physics/Math/Software

● Principal Data Scientist at Microsoft
○ Azure Machine Learning

● Demand forecasting, price optimization, statistical decision making

● Also, father of small children
○ Very sleepy all the time 



Disclaimers

● Microsoft has a significant stake in OpenAI (GPT-3, ChatGPT)

● I’m here in a personal capacity, not on behalf of Microsoft

● Not an expert on LLMs - just a data scientist who tries to read fine print 



Machine Learning 101



What is a model?

Dumb definition: A box that does something to a bunch of numbers

[0.2, 654.9, 4, 0, -3.6]                                   [0.8, 230.6]

The box need not be deterministic - the same input may give different outputs

Model



Model parameters

The box usually has adjustable knobs that change the output

[0.2, 654.9, 4, 0, -3.6]                                                            [0.8, 230.6]

[0.2, 654.9, 4, 0, -3.6]                                                            [0.32, 789.1]



Model parameters

J. von Neumann: “With four parameters I can fit an elephant, and with five I 
can make him wiggle his trunk.”

GPT-3 has 175 billion parameters - maybe we wiggle individual hair follicles?

From von Neumann's Elephant on Wikipedia

https://en.wikipedia.org/wiki/Von_Neumann%27s_elephant


Model training

● Training means finding the “best” settings for the knobs/parameters

● Start with a set of example pairs of inputs and outputs
○ “Training data”

● Adjust the parameters until model outputs are “close” to example outputs

● Check how well the model predicts outputs for other examples not in the 
training



What is GPT?



“Generative”

The output is a probabilistic prediction of the next token in a natural language 
text string

“Beware the ides of “ GPT

Word p

February 0.2

March 0.7

April 0.1



“Pre-trained”

The model is trained on a large number of example text strings from several 
sources, e.g., for GPT-3: 

From OpenAI's GPT-3 paper

https://arxiv.org/abs/2005.14165


“Transformer”

A type of deep neural network model designed 
primarily for natural language tasks.

● Considered the current “state of- the art” in NLP
● Most important feature: attention mechanism 

Diagram from Google Brain's Transformer paper

https://arxiv.org/abs/1706.03762


Words to numbers: tokenization 
and embeddings



Tokenization

● Parse strings into discrete pieces - “tokens”

● Tokens have numbers between 1 and N

● For GPT-3, N ~ 50,000

“This is a tokenized sentence” ->                    
[1212, 318, 257, 11241, 1143, 6827, 13]

 
From OpenAI's interactive tokenizer

https://beta.openai.com/tokenizer


Limitations of numbered tokens

We can’t do arithmetic with numbered tokens:

“king” - “man” + “woman”  ≟ “queen”

3364  -  528    + 2415        ≠  16599 

These numbers contain zero meaning about their words :(

  

Tokenizer



Embeddings

Basic idea: Find a numerical representation that encodes word meaning

“king”  ->

 Each token now has its own list of 40 decimal numbers - AKA an embedding 



Embeddings

This example is from Jay Alammar's machine learning blog

https://jalammar.github.io/illustrated-word2vec/


Embeddings in GPT

● In GPT-3, each token embeds into 12,228 numbers
○ This is called the embedding dimension 

● Embeddings in GPT are part of the model
○ ~640MM parameters for tuning

● Also embeddings by token position within a string  



GPT end-to-end



GPT-3 overview

what are you ? <> … <>

Tokenized input: 2048 tokens

Embedding

Positional 
embedding

Transformer layers          
x96

Inverse 
embedding

Probability 
activation

Token p

I 0.8

cat 1e-4

… …

dog 2e-5



GPT Transformer layers

What

are

you

?

Multi-head attention

Layer normalization

Layer normalization

Feed forward

Multi-head attention

Layer normalization

Layer normalization

Feed forward

+94

Embedded token sequence



GPT Transformer, first layer

Multi-head attention

Layer normalization

Layer normalization

Feed forward

Each layer transforms a sequence in embedding space.

Transform outputs are no longer precise tokens -> “fuzzy” tokens  

What

are

you

?

Embedded token sequence

Embedded “fuzzy” tokens



Attention mechanism

● The attention unit computes a degree of 
association between tokens in the input 
sequence - the “attention”

● Different layers can focus on 
different kinds of associations

● Here, an attention unit learned to 
associate a pronoun - “it” - back to the 
sentence subject - “The animal”

● Interpretation is hard since really these 
are “fuzzy” tokens in embedding space From Jay Alammar's Illustrated Transformer

https://jalammar.github.io/illustrated-transformer/


Attention unit output

w_avg

● Each output row is a weighted average of all input rows

● Weights are attention values for the output position from all other positions 

,

Attention unit output

Input rows Attention from 
input rows



Fuzzy tokens to probabilities

Embedded “fuzzy” tokens

Inverse 
embedding

Probability 
activation

Token p

I 0.8

cat 1e-4

… …

dog 2e-5

● A “fuzzy” token is a superposition of tokens in embedding space
○ Quantum token theory™

● The inverse embedding operation sends them back to “vocabulary” space
○ Proportions in the superposition can be interpreted as probabilities



Training GPT

● Parse example text into chunks of 2048 tokens each

● Send chunks into GPT to predict the token following each input token

● Compare predictions with real values from text via a loss function
○ Loss function measures degree of difference between predictions and actuals

● Adjust GPT parameters to reduce the loss function
○ Stochastic gradient descent FTW

● Repeat until predictions are “close enough” to actual next tokens



Applications



Applications of GPT

● Building block for AI applications

● “Fine tuned” for domain and wired into other models
○ Fine tuning =  update GPT parameters via new training data

● E.g. ChatGPT, GitHub Copilot, Jasper.ai

https://chat.openai.com/
https://github.com/features/copilot
https://www.jasper.ai/


GPT as a component of ChatGPT

From OpenAI's ChatGPT blog 

https://openai.com/blog/chatgpt/


The “Bitter Lesson”

● Language structure learned via minimizing the loss function
○ GPT has no a priori knowledge

● Works via associations between words learned from billions of examples, 
not from first principle understanding of language

● Cons: model limited to what it sees in training
○ Reproduces biases, can be factually inaccurate, no internal morality

● But! Incredible facility given simple assumptions 
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Happy 
Hacking, Y’all!

 


