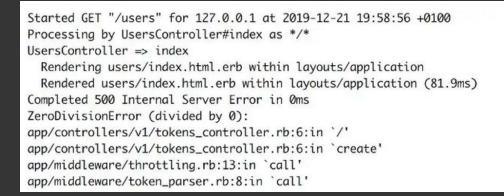
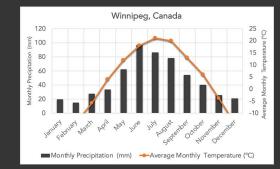
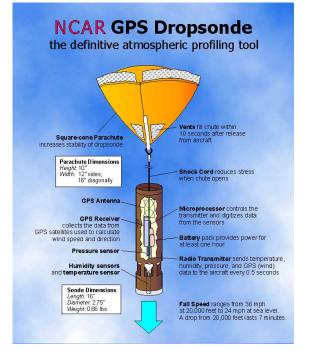

Logging and Observability in Distributed Systems

David Jahn (VMware, Meta)

How do we know about the state of systems?





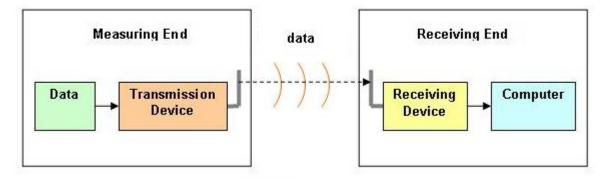

Weather Forecast for Inu, May 04, 2017, Issued 4:51 PM EDI DOC/NOAA/NWS/NCEP/Weather Prediction Center Prepared by Reinhart based on WPC, SPC and NHC forecasts

Measurements (observables)

- Numbers
 - "The thermometer reads 78 degrees"
 - Usually a function of time / space
- Not numbers
 - "The radiator looks broken"
 - "I see error lines in the log file"

- Sensors (instrumentation)
 - Collect measurement

• Transmitter


• Send data home

Telemetry refers to

- 1) Collection of data
- 2) Transmission / Storage
- 3) Analysis / Usage

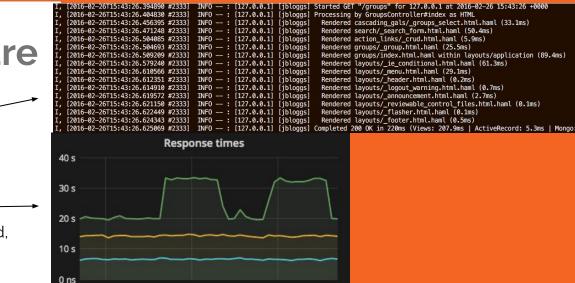
Examples: Aviation, Weather Research, Mining/Drilling, Vehicles, etc.

Telemetry in Software

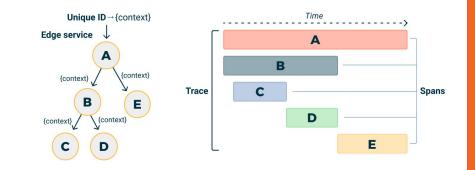
(also called **Observability**)

Logging -

Log lines from a web server


Monitoring / Metrics

Requests Per Second, Bytes Per Second, Errors Per Second, Latency, CPU usage


→ Distributed Tracing

Graph structure (service A called service B)

 APM (Application Performance Monitoring/Metrics/Management)
 Catch-all buzzword

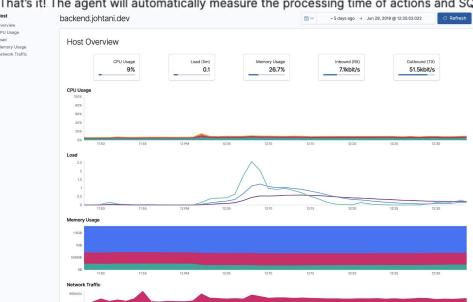
How does it work?

(almost) all software telemetry is something like:

- Import logging library/package into your code
- Configure
- Add custom metrics/logs (if desired)
- Many libraries are designed to work "out of the box" in popular app frameworks

Once your app is "instrumented", you need:

- Processing system to receive logs
- Storage + querying system
- UI/UX to visualize, search logs
- Alerting / paging system


When using Elastic APM with Ruby on Rails, configure the agent as follows. First, add to use to the Gemfile.

```
# For Elastic APM
gem 'elastic-apm'
```

CDITIeane

Then, create a file called elastic_apm.yml in the config directory, and add your serve

```
server_url: <*= ENV['ELASTIC_APM_SERVER_URL'] *>
secret token: <= ENV['ELASTIC APM SECRET TOKEN'] %>
```


That's it! The agent will automatically measure the processing time of actions and SQ

Telemetry Value

Operations / Devops

Know when things break (ideally before they break)

Reduce downtime

 \rightarrow Some sites lose millions in revenue per hour in outages

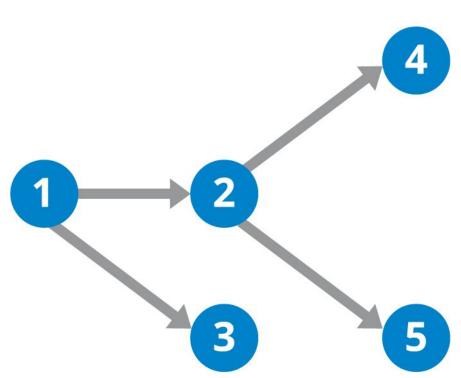
Performance

Reduce latency Improve perf / Reduce expenses

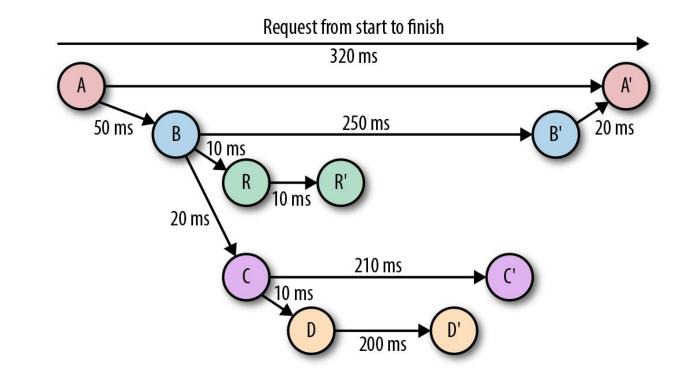
 \rightarrow Some sites have high infra costs, millions or billions of \$

→ Security

Monitor potential attacks / threats


Company	Founded	Funding	Today	
Splunk	2003	\$2.3B	market cap \$10B	This is a large industry.
Dynatrace	2005	\$22M	market cap \$10B	There are many companies and startups (hundreds) that focus on observability / logging / APM.
App Dynamics	2008	\$364M	\$3.7B acquisition, 2017 by Cisco	VCs have invested billions of dollars.
New Relic	2008	\$214M	market cap \$3.5B	
Datadog	2010	\$148M	market cap \$20B	
Elastic	2012	\$162M	market cap \$5B	APM companies focus on developing logging libraries,
Logz.io	2014	\$122M	-	along with processing backends + frontends.
Instana	2015	\$57M	\$??B acquisition, 2020 by IBM	
Honeycomb	2016	\$85M	-	1
Observe	2017	\$112M	-	

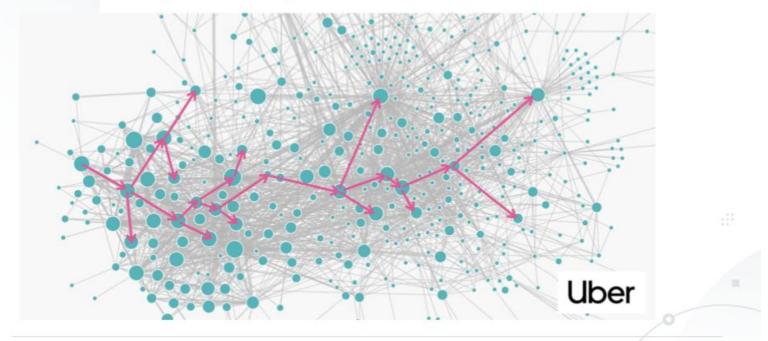
Distributed Tracing: a (small) deep dive


Websites / Apps are often **multiple services** that talk to each other.


- Web server \rightarrow Database
- Web server \rightarrow Cache
- Web server
 - \rightarrow Authentication Service
 - \rightarrow Shopping Cart Service
 - \rightarrow Database

Each call forms a (mathematical) **graph**, in particular a **DAG** (directed acyclic graph)

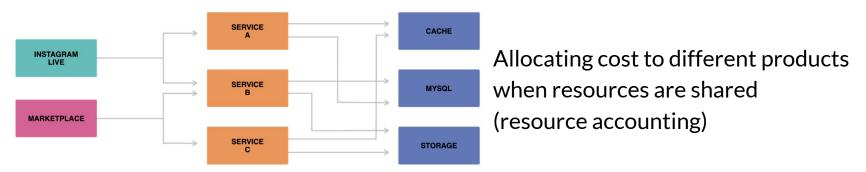
A distributed trace is a log of the call graph from an application request



(Jaeger open-source tracing system)

Depending on the scale of a company, and their architectural decisions... Traces can be large

Diagnosing the Long Tail


Would You Like Some Tracing With Your Monitoring? - Yuri Shkuro, Uber Technologies - KCCNA 2017

Use Cases for Distributed Traces

Latency Debugging (why is my request slow?)

Performance Analysis (what is the global cost of a request?)

Debugging system failures (what service failed?)

Akanksha Bansal and Richard Cornew Systems@Scale 2021 presentation "End-to-End Resource Accounting Leveraging Distributed Tracing"

Thanks!

Further reading:

- <u>Dapper whitepaper</u> Google distributed tracing system
- <u>Canopy whitepaper</u> Meta/Facebook distributed tracing system
- <u>OpenTelemetry</u> open source standard + toolset for logging and tracing
- <u>The Three Pillars of Observability</u> Chapter from O'Reilly book
- <u>The Butterfly Effect in Distributed Systems</u> Distributed resource accounting